How do we simplify #(3a^(-5)b^2)/(18ab^(-3))# and get the answer in the positive exponential notation?
1 Answer
Sep 12, 2017
Explanation:
#"using the "color(blue)"law of exponents"#
#•color(white)(x)a^m/a^n=a^((m-n))tom>n#
#•color(white)(x)a^m/a^n=1/a^((n-m))ton>m#
#"separate the fraction into product of like factors"#
#rArr(3a^-5b^2)/(18ab^-3)#
#=3/18xxa^-5/a^1xxb^2/b^-3#
#=cancel(3)^1/cancel(18)^6xx1/a^(1-(-5))xxb^(2-(-3))#
#=1/6xx1/a^6xxb^5/1#
#=(1xx1xxb^5)/(6xxa^6xx1)=b^5/(6a^6)larrcolor(red)" positive exponent form"#