How do you add and subtract #\frac { 5x - 9} { x ^ { 2} + 5x - 14} - \frac { 3x + 4} { x ^ { 2} + 3x - 10} + \frac { x - 5} { x ^ { 2} + 12x + 36}#?

1 Answer
Dec 25, 2016

#(5x-9)/(x^2+5x-14)-(3x+4)/(x^2+3x-10)+(x-5)/(x^2+12x+36)=(3x^4+20x^3-148x^2-1325x-2278)/((x-2)(x+7)(x+5)(x+6)^2)#

Explanation:

#(5x-9)/(x^2+5x-14)-(3x+4)/(x^2+3x-10)+(x-5)/(x^2+12x+36)#

Before adding and subtracting, we should factorize all the expressions in denominators.

#x^2+5x-14=x^2+7x-2x-14=x(x+7)-2(x+7)=(x-2)(x+7)#

#x^2+3x-10=x^2+5x-2x-10=x(x+5)-2(x+5)=(x-2)(x+5)#

#x^2+12x+36=(x+6)^2#

Note that there GCD is #(x-2)(x+7)(x+5)(x+6)^2#

We may add and subtract like common fractions but noting them to be algebraic expressions.

Hence #(5x-9)/(x^2+5x-14)-(3x+4)/(x^2+3x-10)+(x-5)/(x^2+12x+36)#

= #(5x-9)/((x-2)(x+7))-(3x+4)/((x-2)(x+5))+(x-5)/(x+6)^2#

= #((5x-9)(x+5)(x+6)^2-(3x+4)(x+7)(x+6)^2+(x-5)(x-2)(x+7)(x+5))/((x-2)(x+7)(x+5)(x+6)^2)#

= #(5x^4+76x^3+327x^2+36x-1620-(3x^4+61x^3+436x^2+1236x+1008)+x^4+5x^3-39x^2-125x+350)/((x-2)(x+7)(x+5)(x+6)^2)#

= #(3x^4+20x^3-148x^2-1325x-2278)/((x-2)(x+7)(x+5)(x+6)^2)#