How do you apply the ratio test to determine if #Sigma 1/(lnn)^n# from #n=[2,oo)# is convergent to divergent?

1 Answer
Mar 5, 2017

he series:

#sum_(n=2)^oo 1/(lnn)^n#

is convergent.

Explanation:

We have the series:

#sum_(n=2)^oo 1/(lnn)^n#

Now evaluate the ratio:

#abs(a_(n+1)/a_n) = abs ( (1/(ln(n+1)^(n+1)) ) /(1/(lnn)^n)) = (lnn)^n/(ln(n+1)^(n+1)) = (lnn/ln(n+1))^n 1/ln(n+1)#

Now consider the function:

#f(x) = lnx/ln(x+1)#

the limit for #x->oo# is in the form #oo/oo# so we can calculate it using l'Hospital's rule:

#lim_(x->oo) lnx/ln(x+1) = lim_(x->oo) (d/dx lnx)/(d/dx ln(x+1)) = lim_(x->oo) (1/x)/(1/(x+1)) = lim_(x->oo) (x+1)/x =1 #

As #f(n) = lnn/ln(n+1)# we then have:

#lim_(n->oo) lnn/ln(n+1) =1#

and therefore:

#lim_(n->oo) (lnn/ln(n+1))^n =1#

Then:

#lim_(n->oo) abs(a_(n+1)/a_n) = lim_(n->oo) (lnn/ln(n+1))^n 1/ln(n+1) = lim_(n->oo) 1/ln(n+1) = 0#

which proves the series to be convergent.