How do you calculate the left and right Riemann sum for the given function over the interval [0, ln2], using n=40 for #e^x#?
1 Answer
Left Riemann sum
Right Riemann sum
Explanation:
If
#a_k = a r^(k-1)#
and the sum is given by:
#sum_(k=1)^n a_k = (a(r^n-1))/(r-1)#
Given an exponential function
Dividing the interval
#a_k = e^(1/n ((k-1) ln(2))) = 2^((k-1)/n)#
i.e. a geometric sequence with initial term
The left Riemann sum is:
#ln(2)/n sum_(k=1)^n 2^((k-1)/n) = ln(2)/n (2^(n/n) - 1)/(2^(1/n)-1) = ln(2)/(n(2^(1/n)-1))#
The right Rieman sum is given by multiplying this by
#(2^(1/n) ln(2))/(n(2^(1/n)-1)#
So with
Left Riemann sum
Right Riemann sum