How do you condense #((3a^3b^3)/(a-b))/((4ab)/(b-a))#?

1 Answer
Feb 20, 2017

#((3a^3b^3)/(a-b))/((4ab)/(b-a))=-(3a^2b^2)/4#

Explanation:

Note thar #(b-a)--(a-b)# and we are going to use this here.

Now #((3a^3b^3)/(a-b))/((4ab)/(b-a))#

= #(3a^3b^3)/((a-b))xx((b-a))/(4ab)#

= #(3a^3b^3)/((a-b))xx-((a-b))/(4ab)#

= #(3a^3b^3)/(cancel((a-b)))xx-(cancel((a-b)))/(4ab)#

= #- (3xxaxxaxxcancelaxxcancelbxxbxxb)/(4xxcancelaxxcancelb)#

= #-(3a^2b^2)/4#