How do you condense #a ln 4 - ln b#?

1 Answer
Apr 14, 2016

Answer:

#aln4-lnb=ln(4^a/b)#

Explanation:

We can condense using identities

#log_ap_1+log_ap_2+log_ap_3+..+log_ap_n=log_a(p_1*p_2*p_3*...*p_n)#

#log_ap-log_aq=log_a(p/q)#

#nlog_ap=log_ap^n# and

#1/mlog_ap=log_ap^(1/m)=log_aroot(m)p#

Using these #aln4-lnb=ln4^a-lnb=ln(4^a/b)#