How do you condense #ln5/2+ln6/2+ln7/2#?

1 Answer
Dec 4, 2016

Using the exponential logarithm rule, #alogb=logb^a#, #ln5/2+ln6/2+ln7/2# can be written as

#ln5^(1/2)+ln6^(1/2)+ln7^(1/2)=lnsqrt5+lnsqrt6+lnsqrt7#

Using the logarithmic multiplication rule, #loga+logb=logab#, #lnsqrt5+lnsqrt6+lnsqrt7=lnsqrt210#