How do you convert #1=(-2x-2)^2+(y+7)^2# into polar form?

1 Answer
Feb 11, 2018

#r^2(4cos^2theta+sin^2theta)+r(14sintheta-8costheta)+52=0#

Explanation:

Given:
#1=(-2x-2)^2+(y+7)^2#
#x=rcostheta#
#y=rsintheta#
Now,
#1=(-2rcostheta-2)^2+(rsintheta+7)^2#
#1=4r^2cos^2theta-8rcostheta+4+r^2sin^2theta+14rsintheta+49#
#1=r^2(4cos^2theta+sin^2theta)+r(14sintheta-8costheta)+4+49#
Simplifying
#r^2(4cos^2theta+sin^2theta)+r(14sintheta-8costheta)+53-1=0#
#r^2(4cos^2theta+sin^2theta)+r(14sintheta-8costheta)+52=0#