How do you convert #(1, 5pi/6)# into rectangular coordinates?
1 Answer
Mar 21, 2016
Explanation:
Using the formulae that links Polar to Cartesian coordinates.
#• x = rcostheta #
#• y = rsintheta # here r = 1 and
# theta = (5pi)/6# hence : x
# = 1xxcos((5pi)/6) = cos((5pi)/6) = -cos(pi/6) # and
# y = 1xxsin((5pi)/6) = sin((5pi)/6) = sin(pi/6) # now the exact value of
# cos(pi/6) = sqrt3/2 #
and the exact value of#sin(pi/6) = 1/2 # thus x =
# - cos(pi/6) = - sqrt3/2 #
and y# = sin(pi/6) = 1/2 #