How do you convert #[3, -5pi/4]# into rectangular coordinates?
2 Answers
Explanation:
We're asked to find the rectangular coordinate of a given polar coordinate.
In order to do this, we use the equations
#ul(x = rcostheta#
#ul(y = rsintheta#
where in this case
-
#r = 3# -
#theta = (-5pi)/4#
Thus, we have
#x = 3cos((-5pi)/4) = color(red)(ul(-2.121#
#y = 3sin((-5pi)/4) = color(green)(ul(2.121#
The coordinate is therefore
#ulbar(|stackrel(" ")(" "(color(red)(-2.121), color(green)(2.121))" ")|)#
Explanation:
#"to convert from "color(blue)"polar to rectangular"#
#"that is "(r,theta)to(x,y)" using"#
#•color(white)(x)x=rcostheta" and " y=rsintheta"#
#"here " r=3" and "theta=-(5pi)/4#
#rArrx=3xxcos(-(5pi)/4)#
#color(white)(rArrx)=-3xxcos(pi/4)#
#color(white)(rArrx)=-3xx1/sqrt2=-(3sqrt2)/2#
#rArry=3xxsin(-(5pi)/4)#
#color(white)(rArry)=3xxsin(pi/4)#
#color(white)(rArry)=3xx1/sqrt2=(3sqrt2)/2#
#rArr(3,-(5pi)/4)to(-(3sqrt2)/2,(3sqrt2)/2)#