How do you convert #4=(x-2)^2+(y-6)^2# into polar form?
1 Answer
Explanation:
Use the rule for switching from a Cartesian system to a polar system:
#x=rcostheta# #y=rsintheta#
This gives:
#4=(rcostheta-2)^2+(rsintheta-6)^2#
#4=r^2cos^2theta-4rcostheta+4+r^2sin^2theta-12rsintheta+36#
#0=r^2cos^2theta+r^2sin^2theta-4rcostheta-12rsintheta+36#
#0=r^2(cos^2theta+sin^2theta)+r(-4costheta-12sintheta)+36#
Note that
#0=r^2+r(-4costheta-12sintheta)+36#
This can be solved through the quadratic equation.
#r=(4costheta+12sintheta+-sqrt(16cos^2theta+96costhetasintheta+144sin^2theta-144))/2#
#r=(4costheta+12sintheta+-4sqrt(cos^2theta+6costhetasintheta+9sin^2theta-9))/2#
#r=2costheta+6sintheta+-2sqrt(cos^2theta+6costhetasintheta+9sin^2theta-9)#
#r=2costheta+6sintheta+-2sqrt(cos^2theta+6costhetasintheta+9(sin^2theta-1))#
#r=2costheta+6sintheta+-2sqrt(cos^2theta+6costhetasintheta-9cos^2theta)#
#r=2costheta+6sintheta+-2sqrt(6costhetasintheta-8cos^2theta)#
Note that
#r=2costheta+6sintheta+-2sqrt(3sin2theta-8cos^2theta)#
If you have any questions as to any of the underlying algebra going on here, feel free to ask. I felt it would be a little much to try to explain each step.