How do you convert #4=(x-2)^2+(y-6)^2# into polar form?

1 Answer
Jan 28, 2016

#r=2costheta+6sintheta+-2sqrt(3sin2theta-8cos^2theta)#

Explanation:

Use the rule for switching from a Cartesian system to a polar system:

  • #x=rcostheta#
  • #y=rsintheta#

This gives:

#4=(rcostheta-2)^2+(rsintheta-6)^2#

#4=r^2cos^2theta-4rcostheta+4+r^2sin^2theta-12rsintheta+36#

#0=r^2cos^2theta+r^2sin^2theta-4rcostheta-12rsintheta+36#

#0=r^2(cos^2theta+sin^2theta)+r(-4costheta-12sintheta)+36#

Note that #cos^2theta+sin^2theta=1# through the Pythagorean identity.

#0=r^2+r(-4costheta-12sintheta)+36#

This can be solved through the quadratic equation.

#r=(4costheta+12sintheta+-sqrt(16cos^2theta+96costhetasintheta+144sin^2theta-144))/2#

#r=(4costheta+12sintheta+-4sqrt(cos^2theta+6costhetasintheta+9sin^2theta-9))/2#

#r=2costheta+6sintheta+-2sqrt(cos^2theta+6costhetasintheta+9sin^2theta-9)#

#r=2costheta+6sintheta+-2sqrt(cos^2theta+6costhetasintheta+9(sin^2theta-1))#

#r=2costheta+6sintheta+-2sqrt(cos^2theta+6costhetasintheta-9cos^2theta)#

#r=2costheta+6sintheta+-2sqrt(6costhetasintheta-8cos^2theta)#

Note that #2costhetasintheta=sin2theta#, so #6costhetasintheta=3sin2theta#.

#r=2costheta+6sintheta+-2sqrt(3sin2theta-8cos^2theta)#

If you have any questions as to any of the underlying algebra going on here, feel free to ask. I felt it would be a little much to try to explain each step.