How do you convert # r=4 theta - sin theta +cos^2theta# to Cartesian form?

1 Answer
Oct 9, 2016

Here is 1 of the 3 equations:

#(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0#

Please see the explanation for the other two.

Explanation:

Let's begin by multiplying both sides of the equation by #r²#

#r^3 = 4r²theta - r²sin(theta) + r²cos²(theta)#

Because #x = rcos(theta)#, we can replace #r²cos²(theta)# with #x²#:

#r^3 = 4r²theta - r²sin(theta) + x²#

Because #y = rsin(theta)# and #r = sqrt(x² + y²)#, we can replace #- r²sin(theta)# with #-ysqrt(x² + y²)#:

#r^3 = 4r²theta - ysqrt(x² + y²) + x²#

The #4r²theta# term makes the one equation become 3 equations with 3 domain restrictions:

#r^3 = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0#

#r^3 = 4(x² + y²)(tan^-1(y/x) + pi) - ysqrt(x² + y²) + x²; x < 0#

#r^3 = 4(x² + y²)(tan^-1(y/x) + 2pi) - ysqrt(x² + y²) + x²; x > 0, y < 0#

Replace #r³# with #(x² + y²)^(3/2)#

#(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x)) - ysqrt(x² + y²) + x²; x > 0, y >= 0#

#(x² + y²)^(3/2)= 4(x² + y²)(tan^-1(y/x) + pi) - ysqrt(x² + y²) + x²; x < 0#

#(x² + y²)^(3/2) = 4(x² + y²)(tan^-1(y/x) + 2pi) - ysqrt(x² + y²) + x²; x > 0, y < 0#