How do you convert #(x + 1)^2 + (y + 1)^2 =4# into polar form?
1 Answer
Dec 6, 2015
Substitute
#(r cos theta + 1)^2 + (r sin theta + 1)^2 = 4#
Hence:
#r^2 + 2(cos theta + sin theta)r - 2 = 0#
Explanation:
Substitute
#(r cos theta + 1)^2 + (r sin theta + 1)^2 = 4#
This can be reformulated as follows:
#4 = (r cos theta + 1)^2 + (r sin theta + 1)^2#
#= r^2 cos^2 theta + 2r cos theta + 1 + r^2 sin^2 theta + 2r sin theta + 1#
#= r^2 (cos^2 theta + sin^2 theta) + 2r (cos theta + sin theta) + 2#
#= r^2 + 2r (cos theta + sin theta) + 2#
Subtract
#r^2 + 2(cos theta + sin theta)r - 2 = 0#