How do you convert #x^2 +y^2-2x=0# to polar form?
1 Answer
May 21, 2016
Explanation:
Substitute:
#{ (x= r cos theta), (y=r sin theta) :}#
So we have:
#0 = x^2+y^2-2x#
#=(r cos theta)^2+(r sin theta)^2-2r cos theta#
#=r^2(cos^2 theta + sin^2 theta) - 2r cos theta#
#=r^2-2r cos theta#
Add
#2rcos theta = r^2#
graph{x^2+y^2-2x=0 [-1.667, 3.333, -1.28, 1.22]}