How do you convert #x^2+y^2=x# to polar form?
1 Answer
May 8, 2016
Explanation:
To convert to polar form, substitute:
#{ (x = r cos theta), (y = r sin theta) :}#
then simplify:
So:
#x^2+y^2 = x#
becomes:
#(r cos theta)^2 + (r sin theta)^2 = r cos theta#
The left hand side simplifies as follows:
#(r cos theta)^2 + (r sin theta)^2#
#=r^2 cos^2 theta + r^2 sin^2 theta#
#=r^2(cos^2 theta + sin^2 theta)#
#=r^2#
So:
#r^2 = r cos theta#
You might be tempted to simplify this by dividing both sides by
#r = cos theta#
but that loses the solution
#r^2 = r cos theta#