How do you convert #xy=x-2y+y^2 # into a polar equation?

1 Answer

#r=(cos theta-2*sin theta)/(sin theta* cos theta-sin^2 theta)#

Explanation:

just use the transformation equivalent

#x=r cos theta# and #y=r sin theta# in the equation

#xy=x-2y+y^2#

so that #xy=x-2y+y^2# becomes

#r cos theta* r sin theta=r cos theta-2* r sin theta+ (r sin theta)^2#

canceling some of the r

#r* cos theta* sin theta= cos theta-2* sin theta+ r sin^2 theta#

simplify to obtain

#r* (cos theta* sin theta- sin^2 theta)= cos theta-2* sin theta#

and

#r=(cos theta-2* sin theta)/(cos theta* sin theta- sin^2 theta)#

have a nice day!