How do you convert #y = (sqrt(3)/3)x# into polar form?

1 Answer

#tan theta=sqrt3/3#

Explanation:

Start from the given #y=sqrt3/3*x #

from the conversion equivalents

#y=r*sin theta#

#x=r*cos theta#

Replace now the variables #x# and #y# with the equivalent expressions in terms of #r# and #theta#

#y=sqrt3/3*x#

#r*sin theta=sqrt3/3*r*cos theta#

#r*sin theta=sqrt3/3*r*cos theta#

Dividing both sides by #r*cos theta#

#(r*sin theta)/(r*cos theta)=(sqrt3/3*r*cos theta)/(r*cos theta)#

#(cancelr*sin theta)/(cancelr*cos theta)=(sqrt3/3*cancel(r*cos theta))/(cancel(r*cos theta))#

#tan theta=sqrt3/3#

Have a nice day !!! from the Philippines...