How do you derive the half angle formula for sin,cos and tan?

1 Answer
Jun 12, 2015

You can start from #sin^2(x)#.

#sin^2x = (1-cos(2x))/2#

Similarly:
#sin^2(x/2) = (1-cosx)/2#

Thus:
#sin(x/2) = pmsqrt((1-cosx)/2)#
#+# if in quadrant I or II
#-# if in quadrant III or IV

Analogously:
#cos(x/2) = pmsqrt((1+cosx)/2)#
#+# if in quadrant I or IV
#-# if in quadrant II or III

Therefore:
#tan(x/2) = sin(x/2)/cos(x/2) = [(pmsqrt((1-cosx)/2)) / (pmsqrt((1+cosx)/2))]#

#= pmsqrt((1-cosx)/(1+cosx))#
#+# if in quadrant I or III
#-# if in quadrant II or IV

In quadrant I, the division gives #(+/+) = +#

In quadrant III, the division gives #(-/-) = +#

In quadrant II, the division gives #(+/-) = -#

In quadrant IV, the division gives #(-/+) = -#