How do you determine costhetacosθ given tantheta=2/3, pi<theta<(3pi)/2tanθ=23,π<θ<3π2?

1 Answer
Dec 17, 2016

Please see the explanation.

Explanation:

Start with the identity cos^2(theta) + sin^2(theta) = 1cos2(θ)+sin2(θ)=1

Divide both sides by cos^2(theta)cos2(θ):

cos^2(theta)/cos^2(theta) + sin^2(theta)/cos^2(theta) = 1/cos^2(theta)cos2(θ)cos2(θ)+sin2(θ)cos2(θ)=1cos2(θ)

Use the identity sin(theta)/cos(theta) = tan(theta)sin(θ)cos(θ)=tan(θ) and cos^2(theta)/cos^2(theta) = 1cos2(θ)cos2(θ)=1:

1 + tan^2(theta) = 1/cos^2(theta)1+tan2(θ)=1cos2(θ)

Solve for cos(theta)cos(θ):

cos^2(theta) = 1/(1 + tan^2(theta))cos2(θ)=11+tan2(θ)

cos(theta) = +-sqrt(1/(1 + tan^2(theta)))cos(θ)=±11+tan2(θ)

The domain restriction pi < theta < (3pi)/2π<θ<3π2 tells us that thetaθ is in the third quadrant (where the cosine function is negative), therefore, we change the +-± to - only:

cos(theta) = -sqrt(1/(1 + tan^2(theta)))cos(θ)=11+tan2(θ)

Substitute (2/3)^2(23)2 for tan^2(theta)tan2(θ)

cos(theta) = -sqrt(1/(1 + (2/3)^2))cos(θ)=  11+(23)2

cos(theta) = -sqrt(1/(1 + 4/9))cos(θ)=11+49

cos(theta) = -sqrt(1/(13/9))cos(θ)=1139

cos(theta) = -sqrt(9/13)cos(θ)=913

cos(theta) = -(3sqrt(13))/13cos(θ)=31313