How do you determine if #f(x) = 2x^5 - 3x^2 + 2 # is an even or odd function?

1 Answer
Mar 28, 2016

Neither

Explanation:

To determine if a function is even/odd the following applies.

• If f(x) = f( -x) then f(x) is even , #AAx #

Even functions have symmetry about the y-axis.

• If f( -x) = - f(x) then f(x) is odd , #AAx #

Odd functions have symmetry about the origin.
#"----------------------------------------------------------------"#

Test for even :

f( -x) #= 2(-x)^5 - 3(-x)^2 + 2 = -2x^5 - 3x^2 + 2#

since f(x) ≠ f( -x) , then f(x) is not even.
#"-----------------------------------------------------------"#

Test for odd :

# -f(x) = -(2x^5 - 3x^2 + 2) = -2x^5 + 3x^2 - 2 #

since -f(x) ≠ f( -x) , then f(x) is not odd.