How do you determine if #f(x)= - 4 sin x # is an even or odd function?
2 Answers
Explanation:
An odd function is one for which
As
Hence
odd function.
Explanation:
To determine if f(x) is even/odd consider the following.
• If f(x) = f( -x) , then f(x) is even
Even functions are symmetrical about the y-axis.
• If f( -x)= - f(x) , then f(x) is odd
Odd functions have half-turn symmetry about the origin.
Test for even
#f(-x)=-4sin(-x)#
#color(orange)"Reminder " color(red)(|bar(ul(color(white)(a/a)color(black)(sin(-x)=-sinx)color(white)(a/a)|)))#
#rArrf(-x)=-4sin(-x)=4sinx# Since f(x) ≠ f( -x) , then f(x) is not even.
Test for odd
#-f(x)=-(-4sinx)=4sinx=f(-x)# Since f( -x) = - f(x) , then f(x) is an odd function.
graph{-4sinx [-10, 10, -5, 5]}