How do you determine the limit of #(7(e^(5n))+5n)^(1/n)# as n approaches infinity?

1 Answer
Nov 21, 2016

#lim_(nrarroo)(7e^(5n)+5n)^(1/n)=e^5#

Explanation:

Let

#L=lim_(nrarroo)(7e^(5n)+5n)^(1/n)#

Taking the natural logarithm of both sides gives

#ln(L)=ln(lim_(nrarroo)(7e^(5n)+5n)^(1/n))#

Since #ln(x)# is a continuous function this can become

#ln(L)=lim_(nrarroo)ln((7e^(5n)+5n)^(1/n))#

Rewriting using logarithm rules,

#ln(L)=lim_(nrarroo)1/nln(7e^(5n)+5n)#

#ln(L)=lim_(nrarroo)ln(7e^(5n)+5n)/n#

The limit is in the indeterminate form #oo/oo# so L'Hospital's rule applies, yielding

#ln(L)=lim_(nrarroo)(d/(dn)ln(7e^(5n)+5n))/(d/(dn)n)#

#ln(L)=lim_(nrarroo)((35e^(5n)+5)/(7e^(5n)+5n))/1#

#ln(L)=lim_(nrarroo)(35e^(5n)+5)/(7e^(5n)+5n)#

We see that #e^(5n)# is the overpowering term in the limit here, so the limit as #nrarroo# will be #(35e^(5n))/(7e^(5n))=5#. If you are dissatisfied with this explanation, reapplying L'Hospital's rule for two more iterations will get you to the same answer of #5#.

#ln(L)=5#

Rearranging to solve for the limit shows

#L=e^5#