How do you differentiate #f(x)=(1-secx)/(tanx)#?

2 Answers
Jan 8, 2017

#f(x) = (1 - 1/cosx)/(sinx/cosx)#

#f(x) = ((cosx- 1)/cosx)/(sinx/cosx)#

#f(x) = (cosx - 1)/cosx * cosx/sinx#

#f(x) = (cosx - 1)/sinx#

Use the quotient rule.

#f'(x) = (-sinx(sinx) - (cosx - 1)(cosx))/(sinx)^2#

#f'(x) = (-sin^2x - cos^2x + cosx)/(sinx)^2#

#f'(x) = (-(sin^2x + cos^2x) + cosx)/sin^2x#

#f'(x) = (cosx - 1)/sin^2x#

Hopefully this helps!

Jan 8, 2017

# f'(x)=cscx(cotx-cscx)#.

Explanation:

#f(x)=(1-secx)/tanx=1/tanx-secx/tanx=cotx-secx/(sinxsecx)#

#:. f(x)=cotx-cscx#

#:. f'(x)=-csc^2x-(-cscxcotx)=cscx(cotx-cscx).#