Here we can use quotient rule.
Also note that derivative of #arctanx#, which is also known as #tan^(-1)x# is #1/(1+x^2)# i.e.
#d/(dx)arctanx=1/(1+x^2)#
Now according to quotient rule if #f(x)=(g(x))/(h(x))#
then #(df(x))/(dx)=(h(x)*(dg(x))/(dx)-g(x)*(dh(x))/(dx))/((h(x))^2)#
Here #g(x)=1+arctanx# hence #(dg(x))/(dx)=1/(1+x^2)#
and #h(x)=2-3arctanx# hence #(dh(x))/(dx)=-3/(1+x^2)#
Hence
#(df(x))/(dx)=((2-3arctanx)*1/(1+x^2)-(1+arctanx)(-3/(1+x^2)))/((2-3arctanx)^2)#
= #((2/(1+x^2)-(3arctanx)/(1+x^2)+3/(1+x^2)+(3arctanx)/(1+x^2)))/((2-3arctanx)^2)#
= #(5/(1+x^2))/((2-3arctanx)^2)#
= #5/((1+x^2)(2-3arctanx)^2)#