How do you differentiate #f(x) =1/(e^(3-x)+1)# using the quotient rule?
1 Answer
Feb 12, 2016
Explanation:
According to the quotient rule,
#f'(x)=((e^(3-x)+1)d/dx(1)-1d/dx(e^(3-x)+1))/(e^(3-x)+1)^2#
Finding both of the internal derivatives, we see that
#d/dx(1)=0#
To find the second derivative, use the chain rule:
#d/dx(e^x)=e^x" "=>" "d/dx(e^u)=e^u*(du)/dx#
Since
#d/dx(e^(3-x)+1)=e^(3-x)d/dx(3-x)=e^(3-x)(-1)=-e^(3-x)#
The
Plug these both back in:
#f'(x)=((e^(3-x)+1)(0)-1(-e^(3-x)))/(e^(3-x)+1)^2#
#f'(x)=e^(3-x)/(e^(3-x)+1)^2#
We can try to simplify further:
#f'(x)=(e^(3-x))/(e^3/e^x+e^x/e^x)^2#
#f'(x)=(e^(3-x))/(((e^3+e^x)^2)/e^(2x))#
#f'(x)=(e^(3-x)e^(2x))/(e^x+e^3)^2#
#f'(x)=(e^(x+3))/(e^x+e^3)^2#