How do you differentiate #f(x)=2secx+tanx#?

1 Answer
Dec 10, 2016

#f'(x) =sec^2x (1 + 2sinx)#

Explanation:

Start by rewriting in terms of sine and cosine using the reciprocal/quotient identities.

#f(x) = 2/cosx + sinx/cosx#

#f(x) = (2 + sinx)/cosx#

We differentiate using the quotient rule.

#f'(x) = (cosx xx cosx - ( (2 + sinx)(-sinx)))/(cosx)^2#

#f'(x) = (cos^2x - (-2sinx - sin^2x))/(cosx)^2#

#f'(x) = (cos^2x + 2sinx + sin^2x)/cos^2x#

#f'(x) = (1 + 2sinx)/(cos^2x)#

#f'(x) =sec^2x (1 + 2sinx)#

Hopefully this helps!