How do you differentiate #f(x)=(2x^2-5)^3/(x^3+6x)^(4/3)# using the quotient rule?

1 Answer
Jan 21, 2017

write f = N/D then #f' = (DN'-D'N)/D^2# With #N = (2x^2 - 5)^3# and #D = (x^3 + 6x)^(4/3)# one obtains
#N' = 3(2x^2-5)^2 4x#
#D' = 4/3(x^3 + 6x)^(1/3) (3x^2 + 6)#
so
#f' = [(x^3 + 6x)^(4/3)3(2x^2-5)^2 4x - (2x^2 - 5)^(3)(x^3 + 6x)^(1/3) (3x^2 + 6)]/(x^3 + 6x)^(8/3)#
simplifying yields
#f' = (x^3 + 6x)^(-7/3)(2x^2-5)^2 [(x^3 + 6x)12x - (2x^2 - 5)(3x^2 + 6)]#
#f' = (x^3 + 6x)^(-7/3)(2x^2-5)^2 [6x^4 + 75x^2 + 30}#