How do you differentiate #f(x) = (2x-3) ^ -2#?
1 Answer
Apr 24, 2016
Explanation:
differentiate using the
#color(blue)" chain rule " #
# d/dx [f(g(x)) ] = f'(g(x)) . g'(x) #
#"----------------------------------------------"# f(g(x))
#=(2x-3)^(-2) rArr f'(g(x)) = -2(2x-3)^(-3) # and g(x) = 2x - 3 → g'(x) = 2
#"----------------------------------------------"#
Substitute these values into the derivative
#rArr f'(x) = -2(2x-3)^(-3)xx2 = (-4)/(2x-3)^3 #