How do you differentiate #f(x)= cosx/ (sinx)# twice using the quotient rule?

1 Answer
Dec 4, 2015

#f'(x)=-csc^2x,f''(x)=2csc^2xcotx#

Explanation:

Through the quotient rule:

#f'(x)=(sinxd/dx[cosx]-cosxd/dx[sinx])/sin^2x#

Recall that:

#d/dx[cosx]=-sinx#

#d/dx[sinx]=cosx#

#f'(x)=(-sin^2x-cos^2x)/sin^2x#

#f'(x)=-(sin^2x+cos^2x)/sin^2x#

#f'(x)=-1/sin^2x#

#f'(x)=-csc^2x#

In order to find the second derivative, if we want to continue using the quotient rule, use:

#f'(x)=(-1)/sin^2x#

#f''(x)=(sin^2xd/dx[-1]-(-1)d/dx[sin^2x])/sin^4x#

Again, find each derivative:

#d/dx[-1]=0#

Chain rule coming up:

#d/dx[sin^2x]=2sinxd/dx[sinx]=2sinxcosx#

Plug back in:

#f''(x)=(2sinxcosx)/sin^4x#

#f''(x)=(2cosx)/sin^3x#

#f''(x)=2(1/sin^2x)(cosx/sinx)#

#f''(x)=2csc^2xcotx#