How do you differentiate #f(x)=cot(ln2x) # using the chain rule?
1 Answer
Feb 27, 2016
Explanation:
Substitute
#frac{"d"u}{"d"x} = 1/x#
Now substitute
#f'(x) = frac{"d"}{"d"x}(cot(ln(2x)))#
#= frac{"d"}{"d"x}(cot(u))#
#= frac{"d"}{"d"u}(cot(u)) frac{"d"u}{"d"x}#
#= -csc^2(u) 1/x#
#= -csc^2(ln(2x))/x#