How do you differentiate #f(x)=csc(sqrt(2x)) # using the chain rule?
1 Answer
Jan 2, 2016
Explanation:
According to the chain rule,
#d/dx(cscu)=-u'cscucotu#
Thus,
#f'(x)=d/dx(csc(sqrt(2x)))=-csc(sqrt(2x))cot(sqrt(2x))*d/dx(sqrt(2x))#
To find
#d/dx(sqrtu)=1/(2sqrtu)*u'#
So,
#d/dx(sqrt(2x))=1/(2sqrt(2x))*2=1/(sqrt(2x)#
Plug this back in to find
#f'(x)=(-csc(sqrt(2x))cot(sqrt(2x)))/(sqrt(2x))#