How do you differentiate #f(x)=e^(cotsqrtx)# using the chain rule.?
1 Answer
Jan 9, 2016
Explanation:
First Issue: The
#f'(x)=e^cotsqrtx*d/dx(cotsqrtx)#
Second Issue: the cotangent function. Again through the chain rule,
#f'(x)=e^cotsqrtx*-csc^2sqrtx*d/dx(sqrtx)#
Now, to differentiate
#f'(x)=(-csc^2sqrtx*e^cotsqrtx)/(2sqrtx)#