How do you differentiate #f(x)= ln(sin(x^2-x)) #?

1 Answer
Jan 9, 2016

It'll take chain rule to find the solution.

Explanation:

  • Chain rule: #(dy)/(dx)=(dy)/(du)(du)/(dv)(dv)/(dx)#

In this case, #u=sin(v)#, #v=x^2-x#, so that we get #f(x)=ln(u)# and can now proceed, following the rule.

#(df(x))/(dx)=1/ucosv(2x-1)#

Substituting #u#, then #v#:

#(df(x))/(dx)=((2x-1)cosv)/sinv=((2x-1)cos(x^2-x))/(sin(x^2-x))#

#(df(x))/(dx)=color(green)((2x-1)/tan(x^2-x))# or #(df(x))/(dx)=color(green)((2x-1)cot(x^2-x))#