How do you differentiate # f(x) =[(sin x + tan x)/(sin cos x)]^3 #?

1 Answer
May 28, 2017

#(df)/(dx)=3((sinx+tanx)/(sinxcosx))^2(sinx(cosx+2))/cos^3x#

Explanation:

To differentiate #f(x)=[(sinx+tanx)/(sinxcosx)]^3#,

we use chain rule and quotient rule.

Let #f(x)=(g(x))^3#, where #g(x)=(sinx+tanx)/(sinxcosx)#

Now as #f(x)=(g(x))^3#, #(df)/(dg)=3(g(x))^2#

and usiing quotient rule #(dg)/(dx)=(sinxcosx xx (cosx+sec^2x)- (sinx+tanx)(cos^2x-sin^2x))/(sin^2xcos^2x)#

= #(sinxcos^2x+sinxsecx-sinxcos^2x-tanxcos^2x+sin^3x+sin^2xtanx)/(sin^2xcos^2x)#

= #(sinxcos^2x+tanx-sinxcos^2x-sinxcosx+sin^3x+sin^2xtanx)/(sin^2xcos^2x)#

= #1/sinx+1/(sinxcos^3x)-1/sinx-1/(sinxcosx)+sinx/cos^2x+sinx/cos^3x#

= #1/(sinxcos^3x)-1/(sinxcosx)+sinx/cos^2x+sinx/cos^3x#

= #(1-cos^2x)/(sinxcos^3x)+(sinx(cosx+1))/cos^3x#

= #sinx/cos^3x+(sinx(cosx+1))/cos^3x#

= #(sinx(cosx+2))/cos^3x#

and #(df)/(dx)=(df)/(dg)xx(dg)/(dx)#

= #3((sinx+tanx)/(sinxcosx))^2(sinx(cosx+2))/cos^3x#