How do you differentiate #f(x)= sqrt (ln2^x)#?
1 Answer
Nov 15, 2015
Use properties of
Explanation:
Use properties of
Use power rule to differentiate
Reformulate in terms of
So:
#d/(dx) f(x) = d/(dx) sqrt(ln 2^x)#
#= d/(dx) sqrt(x ln(2))#
#=d/(dx) (x ln(2))^(1/2)#
#= sqrt(ln(2)) d/(dx) x^(1/2)#
#= sqrt(ln(2)) * 1/2 x ^(-1/2)#
#= 1/2sqrt(ln(2)/x)#
#= 1/2 sqrt(ln 2^(1/x))#