How do you differentiate #f(x)= sqrt (lnx^2-x)#?

2 Answers
Jun 24, 2018

#f'(x)=1/(2sqrt(lnx^2-x))(2/x-1)#

Explanation:

We will differentiate #f# using the chain rule:
#y=f(g(x))=>y'=f'(g(x))g'(x)#
Therefore, #f'(x)=1/(2sqrt(ln(x^2)-x))d/dx (lnx^2-x)#
To differentiate #lnx^2-x#, recognize that #lnx^2=2lnx# so #d/dx (lnx^2-x)=2/x-1#. Therefore, #f'(x)=1/(2sqrt(lnx^2-x))(2/x-1)#.

Given: #f(x)=\sqrt{\ln(x^2)-x}#

Differentiating w.r.t. #x# as follows

#\frac{d}{dx}f(x)=\frac{d}{dx}\sqrt{\ln(x^2)-x}#

#f'(x)=\frac{1}{2\sqrt{\ln(x^2)-x}}\frac{d}{dx}(\ln(x^2)-x)#

#f'(x)=\frac{1}{2\sqrt{\ln(x^2)-x}}(\frac{1}{x^2}\cdot 2x-1)#

#f'(x)=\frac{2-x}{2x\sqrt{\ln(x^2)-x}}#