How do you differentiate #f(x)= (x^2+3x-6)/(2x-4)# twice using the quotient rule?

1 Answer
Dec 15, 2015

Quotient Rule:
#d/dx {f(x)/g(x)} = (f'(x)g(x)-f(x)g'(x))/g(x)^2#

Original Equation:
#(x^2+3x-6)/(2x-4)#

First, find the derivative of the numerator:
#2x+3#

Times that by the denominator:
#(2x+3)(2x-4)#
#4x^2-2x-12#
Find the derivative of the denominator:
#2#

Times it by the numerator:
#2(x^2+3x-6)#
#2x^2+6x-12#

Subtract the two:
#4x^2-2x-12-2x^2+6x-12#
#2x^2+4x-24#

Square the denominator and divide by it:
#(2x^2+4x-24)/(2x-4)^2#

You can't simplify, so
#f'(x)=(2x^2+4x-24)/(2x-4)^2#

Now repeat the above steps, but with #f'(x)#:
#((4x+4)(2x-4)^2-(2x^2+4x-24)(2)(2x-4))/(2x-4)^4#
#((4x+4)(2x-4)-(2x^2+4x-24)(2))/(2x-4)^3#
#(8x^2-8x-16-4x^2-8x+48)/(2x-4)^3#
#(4x^2-16x+32)/(2x-4)^3#

#f''(x)=(4x^2-16x+32)/(2x-4)^3#