How do you differentiate f(x) = (x^2-4x)/(xcotx+1) using the quotient rule?

1 Answer
Jul 21, 2017

(df)/dx=((2x-4)(xcotx+1)+(x/sin^2theta-cotx)(x^2-4x))/(xcotx+1)^2

Explanation:

(df)/dx=((d(x^2-4x))/dx(xcotx+1)-(d(xcotx+1))/dx(x^2-4x))/(xcotx+1)^2=

((2x-4)(xcotx+1)-(-x/sin^2theta+cotx)(x^2-4x))/(xcotx+1)^2=

((2x-4)(xcotx+1)+(x/sin^2theta-cotx)(x^2-4x))/(xcotx+1)^2