How do you differentiate #f(x) = (x)/(x^2-x+6)# using the quotient rule?
1 Answer
Apr 15, 2016
Explanation:
differentiate using the
#color(blue)" quotient rule " # If f(x) =
#(g(x))/(h(x))" then " f'(x) = (h(x).g'(x) - g(x).h'(x))/(h(x))^2 #
#"---------------------------------------------------------------------"# g(x) = x
#rArr g'(x) = 1 # and h(x)
#= x^2 - x + 6 rArr h'(x) = 2x - 1 #
#"------------------------------------------------------------------"#
substitute these values into f'(x)
#rArr f'(x) =( (x^2-x+6).1 - x(2x-1))/(x^2-x+6)^2 #
#=(x^2-x+6 -2x^2+ x)/(x^2-x+6)^2 = (6-x^2)/(x^2-x+6)^2 #