How do you differentiate g(x) = (x-7)(x^2+3) using the product rule?

1 Answer
Jun 25, 2018

3*x^2-14*x+3

Explanation:

We haveg(x) = (x-7)(x^2+3)
applying product rule we get

  • dg(x)/dx=(x-7)*dy/dx(x^2+3)+(x^2+3)*dy/dx(x-7)
  • =>(x-7)*(2*x+0)+(x^2+3)*(1+0)

using(
dy/dx=x^n=>n*x^(n-1)

dy/dx=k(constant)=>0 )
=>2*x^2-14*x+x^2+3

  • =>3*x^2-14*x+3