How do you differentiate #sin(x) / (1 + sin^2(x))#?
1 Answer
May 5, 2016
Explanation:
Differentiate using the
# color(blue)" quotient rule "# If f(x)
#=(g(x))/(h(x))"then" f'(x)=(h(x).g'(x)-g(x).h'(x))/(h(x)^2#
#"--------------------------------------------------------------------"# g(x)
#=sinxrArrg'(x)=cosx# h(x)
#=1+sin^2xrArrh'(x)=2sinxcosx#
#"-------------------------------------------------------------------"#
now substitute these values into f'(x)
#f'(x)=((1+sin^2x)cosx-sinx(2sinxcosx))/(1+sin^2x)^2#
#=(cosx+cosxsin^2x-2cosxsin^2x)/(1+sin^2x)^2#
#=(cosx-cosxsin^2x)/(1+sin^2x)^2=(cosx(1-sin^2x))/(1+sin^2x)^2# and using trig identity
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|))#
#rArr1-sin^2x=cos^2x#
#rArrf'(x)=(cos^3x)/(1+sin^2x)^2#