How do you differentiate #(x+1)/2#?
1 Answer
Jul 23, 2016
Explanation:
First rewrite the expression as follows.
#(x+1)/2=1/2(x+1)=1/2x+1/2# now differentiate using the
#color(blue)"power rule"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(ax^n)=nax^(n-1)" and " d/dx"(constant)"=0)color(white)(a/a)|)))#
#d/dx(1/2x+1/2)=1/2+0=1/2#