Let #y=(x-cosx)/(sinx+x)# Using Quotient Rule for Diffn., we have, #dy/dx={(sinx+x)(x-cosx)'-(x-cosx)(sinx+x)'}/(sinx+x)^2# #={(sinx+x)(1+sinx)-(x-cosx)(cosx+1)}/(sinx+x)^2# #={sin^2x+xsinx+sinx+x+(cosx-x)(cosx+1)}/(sinx+x)^2# #=(sin^2x+xsinx+sinx+x+cos^2x-xcosx+cosx-x)/(sinx+x)^2# #={1+x(sinx-cosx)+sinx+cosx}/(sinx+x)^2#