How do you differentiate #(xcosx)/ (sinx+x)# using the quotient rule? Calculus Basic Differentiation Rules Quotient Rule 1 Answer Binayaka C. Oct 19, 2017 #f^'(x)= ((cosxsinx -x^2sinx-x))/(sinx+x)^2 # Explanation: Quotient formula: #d/dx(f/g)=(gf^'-fg^')/g^2# #f(x)= (xcosx)/(sinx+x) # #f^'(x)= ((cosx -xsinx)(x+sinx)-xcosx(1+cosx))/(sinx+x)^2 # #f^'(x)= (xcosx+cosxsinx -x^2sinx-xsin^2x-xcosx-xcos^2x)/(sinx+x)^2 # or #f^'(x)= (cancel(xcosx)+cosxsinx -x^2sinx-xsin^2x-cancel(xcosx)-xcos^2x)/(sinx+x)^2 # #f^'(x)= ((cosxsinx -x^2sinx-x(sin^2x+cos^2x)))/(sinx+x)^2 # or #f^'(x)= ((cosxsinx -x^2sinx-x))/(sinx+x)^2 # [Ans] Answer link Related questions What is the Quotient Rule for derivatives? How do I use the quotient rule to find the derivative? How do you prove the quotient rule? How do you use the quotient rule to differentiate #y=(2x^4-3x)/(4x-1)#? How do you use the quotient rule to differentiate #y=cos(x)/ln(x)#? How do you use the quotient rule to find the derivative of #y=tan(x)# ? How do you use the quotient rule to find the derivative of #y=x/(x^2+1)# ? How do you use the quotient rule to find the derivative of #y=(e^x+1)/(e^x-1)# ? How do you use the quotient rule to find the derivative of #y=(x-sqrt(x))/(x^(1/3))# ? How do you use the quotient rule to find the derivative of #y=x/(3+e^x)# ? See all questions in Quotient Rule Impact of this question 1442 views around the world You can reuse this answer Creative Commons License