How do you differentiate #y=(1-x^2)^10#?
1 Answer
Feb 22, 2017
Explanation:
differentiate using the
#color(blue)"chain rule"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))#
#"let "u=1-x^2rArr(du)/(dx)=-2x#
#"then "y=u^10rArr(dy)/(du)=10u^9#
#rArrdy/dx=10u^9.(-2x)# convert u back into terms of x and simplify.
#rArrdy/dx=-20x(1-x^2)^9#