How do you differentiate y=2^(sinpix)?
3 Answers
Jul 21, 2017
Explanation:
You must write
Now we differentiate :
Jul 21, 2017
Explanation:
use lograthmic differentiation
differentiate implicitly
substitue back for
tidying up
Jul 21, 2017
Explanation:
•color(white)(x)d/dx(a^x)=a^xlna
•color(white)(x)d/dx(a^(f(x)))=a^(f(x))lnaxxf'(x)larr" chain rule"
y=2^(sinpix)
rArrdy/dx=2^(sinpix)ln2xxd/dx(sinpix)
color(white)(rArrdy/dx)=2^(sinpix)ln2xxcos(pix)xxd/dx(pix)
color(white)(rArrdy/dx)=piln2cos(pix)2^(sinpix)