How do you differentiate # y=cos^-1(1-2x^2)#?
2 Answers
Mar 6, 2016
Explanation:
Using the
#color(blue)" chain rule "#
#d/dx[f(g(x)] = f'(g(x)) . g'(x) # and the standard derivative
#d/dx(cos^-1 x) =( -1)/sqrt(1 - x^2)#
#rArr dy/dx = (-1)/sqrt(1 - (1-2x^2)^2) d/dx(1-2x^2)#
# = (4x)/sqrt(1-1 +4x^2 - 4x^4) =( 4x)/sqrt(4x^2(1-x^2))#
#= (4x)/(2xsqrt(1-x^2))= 2/sqrt(1-x^2)#
Mar 6, 2016
Explanation: