How do you differentiate #Y = (cos x)^2 - cos x#?
1 Answer
Mar 13, 2018
Explanation:
#"differentiate "(cosx)^2" using the "color(blue)"chain rule"#
#"Given "y=f(g(x))" then"#
#dy/dx=f'(g(x))xxg'(x)larrcolor(blue)"chain rule"#
#rArrd/dx((cosx)^2)=2cosx xxd/dx(cosx)#
#color(white)(xxxxxxxxxxxx)=-2sinxcosx=-sin2x#
#y=(cosx)^2-cosx#
#rArrdy/dx=-sin2x-(-sinx)#
#color(white)(rArrdy/dx)=sinx-sin2x#