How do you differentiate y=ln(3xe^(1-x))y=ln(3xe1x)?

1 Answer
Jul 31, 2018

(1-x)/x1xx.

Explanation:

y=ln(3xe^(1-x))y=ln(3xe1x).

Using the usual rules of log function, we have,

y=ln3+lnx+lne^(1-x), or, y=ln3+lnx+lne1x,or,

y=ln3+lnx+(1-x)lne=ln3+lnx+1-xy=ln3+lnx+(1x)lne=ln3+lnx+1x.

:. dy/dx=0+1/x+0-1.

rArr dy/dx=(1-x)/x, as Respected Sonnhard has derived!