Use the derivative of #lnx# and the Chain Rule.
#d/(dx)(lnx)=1/x#, so (by the chain rule)
#d/(dx)(ln(u))=1/u*(du)/(dx)#
#y=ln(secxtanx)#
#y'=1/(secxtanx)*d/(dx)(secxtanx)#
#=1/(secxtanx)*((secxtanx)tanx+secx*sec^2x)#
(I use the product rule in the form: #d/(dx)(FS)=F'S+FS'#)
#y'=1/(secxtanx)(secxtan^2x+sec^3x)#
There are many other ways to write #1/(secxtanx)(secxtan^2x+sec^3x)#. One of the more obvious is:
#(secxtan^2x+sec^3x)/(secxtanx)=(tan^2x+sec^2x)/tanx# which
could also be written: #tanx+sec^2x/tanx=tanx+secxcscx#. or, factoring out #1/cosx#, we could write #secx(sinx+cscx)# and so on.
(And trig students ask why we have to do identities).